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Suppose E >O and k > I. We show that if II > n,,(k. a) and .4 L Z,, satisfies 
IAl > (( l/k) + E)n then there is a subset B L A such that 0 < 1 BI <I, and xhi B h = 0 

(in 2,). The case k = 3 solves a problem of Stalley and another problem of Erdos 
and Graham. For an integer HI > 0, let snd(nt) denote the smallest integer that does 
not divide PI. We prove that for every I-: > 0 there is a constant c = ~(8:) z I, such 
that for every n > 0 and every rn, n ’ +’ 6 WI < n’llog’n every set A E j I, Z,..., II ) of 

cardinality IAl > c.n/snd(m) contains a subset Bcl- .4 so that ChcB h =m. This is 
best possible, up to the constant C. In particular it implies that for every II there is 
an m such that every set A c (l,..., II jof cardinality IAl > cx/log II contains a subset 
BG A so that xhtS h = ,n, thus settling a problem of Erdds and Graham. ’ IYX7 
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1. l~TR00uCTl0N 

Let n be a positive integer and put N = i 1, 2,..., II ) For IPZ 3 1 let J‘(K WZ) 
denote the maximum cardinality of a set A i N that contains no subset 
BEA so that ChtB h = m. Here we first show that 

f(n. 2n)=($+O(l))~Iz (1.1) 

(as n + co). This settles a problem of Erdos and Graham [El. To establish 
(1.1) we prove the following result about subset sums in the abelian group 
z,. 

THEOREM 1.1. For every- fixed c > 0 and k > 1, lf II > n,(k, F) and A c Z,, 
satisfies IAl > ((l/k) + e) n then there is a subset BE A such that 
O<(BI <k andC,..h=O. 

The case k = 3 of this theorem solves a problem of Stalley [S]. Clearly 
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,f(n, nz) = n for m > 1 + 2 + ... + n = (“;I). Erdos and Graham [E] 
observed that 

f(n,m)3(~+0(1)).n/logiz (1.2) 

for all n, nz. Indeed, by the preceding remark we can assume that nt 6 (‘I ; ’ ). 
By the prime number theorem there is a number q, 1 6 q < (2 + o( 1)). log n 
which does not divide m. Put A = {iEN:q\ i}. Clearly \A\3 
(4 + o( 1 ))n/log II and there is no BE A so that &s B b = WZ. This establishes 
(1.2). In this paper we show that (1.2) is best possible, up to the constant +. 
In fact, we prove a more general result, that determines the asymptotic 
behavior of j”(n, m) for every pair (n, m) where, say, ni-” <m < n*/log n. 
For m 3 1 let snd(m) denote the smallest non divisor of m, i.e., snd(m) = 
min [I: I> 1, I km ).. Clearly ,f‘(n, m) 3 Ln/snd(m) J for all n, m. Indeed, the 
set A of all multiples of snd(m) in N has cardinality Ln/snd(m)] and con- 
tains no subset B the sum of whose elements is m. The following theorem 
shows that this obvious lower bound is, in fact, close to the real order of 
magnitude of ,f’(n, m). 

THEOREM 1.2. For every ji:.ued E > 0 there e.uists a constant c == C(E) b 1 
such that fiw every n and ever?. m that satisfies 

the inequality 

Ln/snd(m)j <f(n, m) 6 c.n/snd(m) (1.4) 

holds. 

Note that the upper bound in (1.4) does not hold for very large m (since 
for every m >, nz f(n, m) = n), and does not hold for very small m (since for 
every m <n/2, J’(n, m) 3 n/2). Thus some restriction of the form (1.3) on 
the size of m is necessary. 

As a special case of Theorem 1.2 observe that if m = I. n, where I is the 
least common multiple of 2, 3,..., t log n, then, by the prime number 
theorem, 1 = e’ l/Z)lOgn(I + U( 1)) and thus, for sufficiently large n, m satisfies 
( 1.3 ) for any E < 1. Hence, by Theorem 1.2 

f(n, m) = @n/log n). 

Our paper is organized as follows. In Section 2 we prove Theorem 1.1. 
Our proof uses some extremal graph theory, the classical theorem of Roth 
[R] about the maximum cardinality of a subset of N that contains no 
three term arithmetic progression, and a theorem of Scherk [Sch] on 
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abelian groups. In Section 3 we prove Theorem 1.2 by combining the 
Cauchey-Davenport theorem and some of the methods of Erdiis and 
Heilbronn [EH] and of Olson [O], with the well known results of 
Vinogradov [V] concerning Goldbach conjecture. The final Section 4 con- 
tains several related results and open problems. 

2. SUBSET SUMS IN Z,,. 

Let rj(r?) denote the maximum cardinality of a subset 
A c N= { 1,2,..., IZ) that contains no arithmetic progression of three terms. 
More than 30 years ago, K. F. Roth [R] (see also [GRS]) proved the 
following. 

LEMMA 2.1. rj(n) d O(n/log log n). 

There are some improvements of this estimate (see [HI), but for our 
purpose here this result suffices. 

Next we need the following result of Scherk [Sch]. 

LEMMA 2.2. Let B arld C be tbrto subsets qf’ cm ahelian group. Suppose 
0 E B n C and suppose that $0 = h + c, where h E B und c E C then h = c = 0. 
Then ~B+C~3~B~+(C-l. 

COROLLARY 2.3. Let A be u subset qf’arl abelian group G of’ order II, und 
suppose 1 Al > n/k. Then there is an integer r, 1 < r < k arm’ u seyuencr 
a,, a, ,..., a, of r not necessarily distinct elements of‘ A .such that C:= , (1, = 0. 

Proqf: Suppose this is false. For each i<E; let A(i) denote the set of all 
elementsg~Gsuchthatg=u,+~,+~~~+u,forsomel~r~iandsome 
not necessarily distinct elements a,. a?,..., LI, of A. We claim that 
IA( b i. IAl for all id k. Indeed, this is obvious for i = 1. Assume it holds 
for some i<k. Put B=A(i)u [O) and C‘=Au(Oj. Notice that by our 
assumption 0 4 A(i) and hence 1 Bl = ]A( i)] + 1, ICI = 1 Al + 1. Also, if 
0= b+c for some bE B and CE C then h= c=O. since otherwise 
0 E A(i + 1 ), contradicting the assumption. By Lemma 2.2 /B + Cl 3 
lBI + ICI - 1 = IA( + IAl + 1. Since B+C= A(i+ 1)u [O) we conclude 
that IA(i+ l)\ >(i+ 1) IAl, as claimed. In particular, we obtain iA( > 
k I A I 3 n and hence A(k) = G. Thus 0 E A(k ), a contradiction. This com- 
pletes the proof of the corollary. 1 

The next lemma follows easily from the known estimates for Turrin num- 
bers for hypergraphs, (see [De]). A slightly weaker version of it can be 
proved by some standard probabilistic arguments. 
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LEMMA 2.4. Let H be a 3-uniform hypergraph with m vertices and at 
most l’m edges. Then H contains an independent set of size at least 

m/( 1 + al), i.e., a set of at least m/( 1 + &I) vertices that contains no edge. 

The next proposition and Lemma 2.1 imply Theorem 1.1. 

PROPOSITION 2.5. Let A be a subset of Z, of cardinality 
IAl > (n/k)+ (1 + J-r,(n). Then there is a subset Bc A of car- 
dinality 1 < 1 BI d k such that Ch E B b = 0 (in Z, ). 

Proof: It is convenient to first consider the elements of A as integers in 
N = ( 1, 2,..., n ) rather than residues modulo n. Call an element a E A good if 
it is the midterm of at least k - 1 distinct 3 term arithmetic progressions of 
elements of A. Otherwise, call it bad. Let C be the set of all bad members of 
A. We claim that ICI d (1 + Jm r3(n). Indeed, suppose this is false. 
Let H be the three uniform hypergraph whose vertices are all elements of 
C. A triple {c,, c?, cj} is an edge if ct, c2, c3 form a 3 term arithmetic 
progression. By the definition of C, no member of C is the middle term of 
more than k - 2 such progressions and hence the number of edges of H is 
at most (k - 2). /Cl. By Lemma 2.4, H contains an independent set of size 
at least ICI/( 1 + J?$Z$ >r,(n). However, this set corresponds to a 
subset of cardinality greater than r3(n) which contains no 3-term arithmetic 
progression. This contradicts the definition of r,(n), and thus ICI d 
(1 + Jm r,(n), as claimed. 

Let 2 = A\C be the set of all good members of A. By assumption 
I,? 3 n/k. Hence, by Corollary 2.3 there are a, ,..., a, E 2 such that 

i a,a,=O (modn), a,3 1, i: a,<kk, s> 1. (2.1) 
,=I ,=I 

Among all the choices for s, a, ,..., a,%, zI ,..., cc, that satisfy (2.1) choose one 
for which x = max ai is minimum and is obtained the minimum possible 
number of times. To complete the proof we must show that for this choice 
max M, = 1. Suppose this is false and assume, without loss of generality, that 
r, = max ai > 2. However, a, is a good member of A, and thus there are 
k - 1 pairs (8,) ci) 1 6 id k - 1 of elements of A such that 2a, = c; + c; for 
all 1 ,< i < k - 1. Clearly all these pairs are pairwise disjoint. Since 
C;=, a, = k and a, 2 2 we conclude that s - 1 < k - 2 and hence there is an 
i, l<i<k-1 such that (c;,c;j n {a,,..., a, i f = a. Hence (a, - 2) 
a,+az a,+ ... + a, a,s + c; + c; = 0 (mod n) contradicting the choice of 
s, a, ,..., a, a, ,..., a,. Thus ai= 1 for all 1 <ids, and the assertion of 
Proposition 2.5 follows. 1 

As mentioned above, Proposition 2.5 and Lemma 2.1 imply Theorem 1.1 
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(and, in fact, a slightly stronger statement). We conclude this section by 
showing how to deduce from Theorem 1.1 that ,f( n, 2n) = ($ + o( 1)) II. 

COROLLARY 2.6. The maximum cardinality of a .&set A I N = 
{ 1, 2,..., n} arcl1 that there is no Bc A rz.ith xht B h = 2n is (t + o( 1 )). n. 
More precise@, for all n 3 2, 

Proof The set A = (ie N: i 3 L2n/3 J ) has cardinality [n/3] + 1 and 
clearly there is no BE A with CheB h = 2n. To prove the upper bound, 

suppose A G N has cardinality IAl 3 (43) + 3 + (1 + ,,6) r,(n). By 
Proposition 2.5, there is a subset B, G A, 1 < 1 B, / < 3 with C,,,EL( h = 0 
(mod n). Since /B, I < 3, the sum Cht B, h is either n or 2n. If it is 2n we take 
B= B,. If it is n we apply Proposition 2.5 to A\~B, to get another subset 
B,cA\B, with lB,/63 and ChtLIz h = IJ. Then for B= B, w B, we have 

c ht B b = 2n. This completes the proof. 1 

3. FORBIDDING ONE SUM 

In this section we prove Theorem 1.2. To this end we need several lem- 
mas. For an abelian group G, an element u E G and a subset BE G, define 
fs(a) = I (a + h) n Bi. This function was introduced by Erdos and 
Heilbronn in [EH]. Olson [0] proved the following simple but useful 
lemma. 

LEMMA 3.1. (i) fstc:= , a,) d xi= , .f~(cJ,). 
(ii) Zj‘ E c G, then 

c;Efx(e) 3 IBI . (IEI - IBl). 

The next lemma is the well known Cauchy-Davenport theorem (see 
[Dal ). 

LEMMA 3.2. If p is a prime and A, B G Z,, then I A + BI 3 
min{p, IAl + IBI - 1). 

LEMMA 3.3. If p is a prime, k > 0 an integer and A s Z, satisjies 
1 Al > (2pjk) + 8k then for every g E Z, there is a subset B c A of cardinalit? 
I BI d 8k - 2 so that Cht B b = g. In particular, there are at most 8k - 2 dis- 
tinct elements of A bvhose sum is 0. 
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Proof: Let C, c A be an arbitrary subset of A of cardinality 
p/4k < IC, 1 6 (p/4k) + 1. For a set Fc G, let F* denote the set of all sub- 
set-sums of F, i.e., F* = (I,.,-,f: F E F}. We claim that for every i, 
0~ i<4k -2 there are i distinct elements h,, h:,..., ~,EA\C, such that 

Ijb,,h? ,...‘h,)*+C,l> i+2 p 
2.2’ (3.1) 

This certainly holds for i = 0. Assuming it holds for i < 4k - 2 we prove it 
for i+ 1. Put D=A\(C’,u {h,,h, ,..., b,]). Clearly IDI >(p/k)+ I. By 
Lemma 3.2 the sum of L(i + 2)/2j copies of D satisfies 

ID+D+ ... +D,.rnin(p,I~I.~>~~($+i). 

Let B be a subset of {b,,..., h, j * + C, of cardinality greater than 
((i + 2)/2. (p/4k) but not greater than half the cardinality of the above sum 
D+D+ ... + D, and let E be a subset of D + D + .. + D of cardinality 
2 I BI. By Lemma 3.l(ii) Cctt j,(e)> jBI .(/El - 1B1) and thus there is an 
PGE such that fs(e) 2 1 BI (I El - I B\ )/I El = ) B\/2. By definition, 
r = d, + d, + . . . + d,,,, 2,,z, for some d,, d, ,..., d,,, + 2,,z, E D. Hence, by 
Lemma 3.1(i) fs(d,)> lBl/(i+2) for at least one d,. Define h,, , =d,. 
Observe that 

{h, ,.... h ,+,j*+C,2Bu(b,+,+BL 

and hence 

Therefore (3.1) holds for all i < 4k - 2 and in particular, there is a subset 
B, G A\C, of cardinality j B, ( = 4k - 2 such that 

lB:+C,l>P/2. (3.2) 

Now let C,cA\(C,uB,) be any subset of cardinality 
p/4k < 1 C,I d (p/4k) + 1. Repeating the argument above one can show that 
there is a set B, c A\(C, u B, u Cz), IB,( = 4k - 2, such that 

IB: + Czl BP/~. (3.3 1 
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Let gEZp be an arbitrary element. By (3.2) and (3.3) the two sets B: + C, 
and g - (Bz + C2) have a nonempty intersection. Therefore, there are 
c,EC,,C,EC~, B’,zB, and B;gBz such that 

c,+cz+ c h = g. 
htBiUB\ 

Define B=B;uBiu{C,,C,}. Clearly lei<8k-2 and Chteh=g. This 
completes the proof of the lemma. 1 

LEMMA 3.4. Suppose n 3 1 and let p be a prime, n < p 6 3n. Let k be an 
integer and let I denote the least common multiple of 2, 3,..., 81i - 2. Then, 
every set A G N= { 1, 2,..., n) of cardinality IA 1 > (6n/k) + (8k)‘l contains a 
subset B of cardinality I BI < 8kl such that Cht B h = 1. p. 

Proof Since I Al 3 (2p/k) + 8k there is, by Lemma 3.3, a subset B, G A 
of cardinality I B, 1 < 8k - 2 such that ChE B, h = 0 (mod p). Put 

c hEB, h = 1, p and observe that 1, 6 8k - 2. Suppose we have already 
defined, for some i < 8kl, i pairwise disjoint subsets B, ,..., B, of A, each of 
cardinality at most 8k - 2, such that for every 1 <j< i, CheR, b = 1,. p, 
where 1 d 1, d 8k - 2 is an integer. Put 2 = A\( U;=, Bi) and observe 
that IAl >, (2p/k) + 8k. Hence, by Lemma 3.3, there is a subset 
B ,+,rA\U;=, B,, so that ChtB,+, b=l,+,.p where l,+1<8k-2. It 
follows that A contains 8kl pairwise disjoint subsets B,,..., BHx, such that 

c h t B, b = lj. p, where 1 6 I,< 8k - 2. By the Pigeonhole principle there is 
some i, 1 d ib 8k - 2 so that at least l/i of the 1,‘s equal i. Let B be the 
union of I/i of the corresponding B,‘s. Then I BI < (8k - 2). l/i 6 8kl and 
ChEBb=l.p, as needed. 1 

The well known conjecture of Goldbach asserts that any even integer 
greater than 2 is the sum of two primes. Vinogradov [V] (see also [ Da21 ) 
proved that there is an n, so that every odd integer greater than 11” is a sum 
of three primes. His proof can be easily modified to show that these primes 
can be chosen in the range, e.g., (0.3n, 0.3%). This is stated in the following 
lemma, whose proof is an easy modification of the one given in [Da21 to 
Vinogradov’s theorem. 

LEMMA 3.5. For n>n,, every odd integer in the range (4n, 8n) is a sum 
of three primes pl, p2, p3, where n < p, ,< 3n. Thus every integer m > 16n is a 
sum of at most m/n primes, each greater or equal than n and smaller or equal 
than 3n. 

PROPOSITION 3.6. There exists an n,, such that,for every n > no and ever? 
m, ifs = snd(m), 8k - 2 <s, 1 is the least common multiple of 2, 3,..., 8k - 2 
and m/l > 16n, then any set A c N= {l,..., n} that satisfies IAl 3 
(6n/k) + (8k)‘l+ (m/n). 8k contains a subset B G A so that x,,t B b = m. 
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Proof: By definition 11 m. Since m/l > 16n, by Lemma 3.5 there exists a 
sequence (p,, pz ,..., p,) of primes, where s d m/l. n, n <pi < 3n and 
XI=, pi = m/l. By repeated application of Lemma 3.4 we obtain s pairwise 
disjoint subsets B, ,..., B, of A, where Che B, b = 1. pi for 1 < i < s. Define 
B=B,v ‘.. uB,. Then BGA and CbEBb=m, as needed. 

Proof of Theorem 1.2. The lower bound f(n, m) 3 Ln/snd(m)] is trivial. 
It clearly suffices to prove the upper bound for n > n, , where n, = n,(E) is 
any constant, since the constant C(E) can be adjusted to give the result for 
ndn,. Suppose n’+’ <m bn*/log’n and put s= snd(m). By the prime 
number theorem s < (2 + o( 1)). log II. If s < 8 there is nothing to prove. 
Otherwise, define k = min(Ls/8 J, E log n/16) and note that 8k - 2 <s and 
that k > d(s). s for some d(s) > 0. Let 1 be the least common multiple of 
2, 3,..., 8k-2, Then ~=e(*~~*~(‘+~‘(‘))~n~“~*~~‘+‘~‘~~<~n” for sufficiently 

large 12. Hence m/l > 16n. By Proposition 3.6 for n > n,, 

6n m 
f(n,m)<li+(8k)‘.l+n.8k 

n 
G---+O(log’n~n’)+O(&---)=0(t). 

d(E).s 

This completes the proof. 1 

4. RELATED RESULTS AND OPEN PROBLEMS 

For n 3 1 and a set M of integers, let ,f(n, M) denote the maximum car- 
dinality of a set A G N that contains no subset B c A such that xbG B b E M. 
Clearly if A4 = (m] then f(n, M) coincides with our previous function 
f(6 ml. 

Let M, denote the set of all powers of two. Clearly f (3n, M,) 3 n, as 
shown by the set of all multiples of 3 up to 3n. Erdos and Freud (see [El) 
asked whether f(3n, M,) =n for all n >, 1. At the moment we are unable to 
settle this problem. We can show, however, that f(3n, M,) is not far 
from n. 

PROPOSITION 4.1. The maximum cardinality of a subset A c N = 
( 1, 2,..., n } such that there is no B c A whose sum of elements is a power of 2 
is (f + o( 1)) n. More precisely, for every n > 1, 

Proof The lower bound is given by A = {ie N: 3 I i). To prove the 

upper bound, suppose A G N has cardinality I A( > (n/3) + 13 & + 
(1 + $) rj( [n + 2 $1). We first claim that there is a sequence a, ,..., a, of 
s< 2 & not necessarily distinct integers, where n <a,<n + 2 & and 
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I,‘= 1 a, is a power of two. Indeed one can easily check that every integer tpz 
that satisfies n3j2 < 1y1< 2n”’ is a sum of s integers a, ,..., a,,, where 
L&J d s < 2 & and n < a, d )I + 2 &. Clearly there is an M in this range 
which is a power of 2. By repeated application of Proposition 2.5 (or 
Corollary 2.6), we conclude that there are s pairwise disjoint subsets 
B,, Bz,..., B,$ of A, where 1 B,j < 6 and x,,G B, h = 2a,. Indeed, suppose 
B, ,..., B, have already been defined for some i < s. Put 2 = A\( LJ’, = , B,) 
and observe that 111 > (a,, ,/3) + 3 + (1 + $) ~~(a,+ ,). Hence, by 
Proposition 2.5 there are two pairwise disjoint subsets B:, , and B:+ , of 2 
such that IB:+ll d3, IB:‘, ,I 63 and xbtB;-, h-0 (modu,,,) CbtB;.., h-0 
(mod u,+ , ). As in the proof of Corollary 2.6 we conclude that either B:, , 
or By+ , or B:, , u B:‘, , can be chosen as B, + , . Therefore the sets B, ,..., B, 
with the desired properties exist. Now put B = B, u ... u B, and observe 
that BE A Chtrr h is a power of 2. This completes the proof. 1 

Let M2 denote the set of all square free numbers. Clearly ,f’(4n, M,) > IT, 
as shown by the set of all multiples of 4 up to 411. Erdiis and Freud [E] 
asked whether .f’(4rl, M,) = II for all II 3 1. Again, our methods here do not 
resolve this question but suffice to show that ,f’(4n, M,) = ( 1 + o( 1)). )I. 

PROPOSITION 4.2. The masimum cwrdimzlit~~ qf’u subset A E N such thut 
there is HO B I A w/lo.w .sum of’elemrnts is square ,fier is (4 + o( I )) . n. Morr 
precisel>s 

Ln/4_16j’(n, M,)<$+(I +J%)r,([n+ 16,/%])+4&. 

Proof: The lower bound is given by A = (i E N: 4 / i). To prove the 
upper bound suppose A c N has cardinality 

IAi>~+(l+$)r,([rr+16$])+4~~. 

We claim that there is a square free number m, n < m d n + 16 & such 
that 2 km and 3 /m. Indeed, the number of elements in this range that are 
divisible by either 2 or 3 is smaller than 4 + 16 4 $. In addition, the num- 
ber of elements in this range divisible by pz for some prime p, 
3<p<&-q PI IS smaller than 1 + ( l/p’) 16 ,,& One can easily 
check that 

and hence there is an m with the desired properties. Consider the elements 
of A as residues modulo m. By assumption IAl 2 (m/4) + (1 + 4) r3(m). 
Hence, by Proposition 2.5, there is a subset B G A of cardinality I BI < 4 
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such that ChG B h = 0 (mod m). Since IBI 6 4 we conclude that over the 
integers xbG B h E {m, 2m, 3m). However, by the choice of m each of these 
numbers is square free. This completes the proof. 1 

Let M, denote the set of all squares. ErdGs [E] showed that 
f(n, M3) 3 (1 + o(l)). 2”‘. n’;3. An immediate consequence of Theorem 1.2 
is that f‘(n, M,) = O(n/log n). At the moment we are unable to improve this 
upper bound, but we suspect that the lower bound is closer to the truth. 

We conclude this paper with the following conjecture, which is a 
strengthening of Theorem 1.2. 

CONJECTURE 4.3. [fn’-’ <m dn’.’ then 

.l’(n, m) = (1 + o( 1)). n/snd(m) 
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Note added in proqf: Conjecture 4.3 has been recently proved for m &n”* by Lipkin and 
for nl> n5 Z+r in [AF]. Related results appear in [EF]. Theorem 1.1 can be proved for every 
finite Abelian group of odd order by replacing Lemma 2.1 by the main result of [FGR]. 
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